

The Moon as a Science Platform

Joseph Lazio

(Jet Propulsion Laboratory, California Institute of Technology),
J. Bowman (ASU), J. O. Burns (U. Colorado), W. M. Farrell (NASA/GSFC),
D. L. Jones (JPL/CIT), J. Kasper (CfA),
R. MacDowall (NASA/GSFC), K. P. Stewart (NRL), K. Weiler (NRL)
&

NASA Lunar Science Institute

© 2012 California Institute of Technology. Government sponsorship acknowledged.

Why The Moon?

Advantages

- ➤ No atmosphere
- Tidally locked
- Seismically stable
- Low gravity
- No (or small) magnetic field
- No (current) orbital debris
- Stable thermal environment, including in potential cold traps

Disadvantages

- Dust
- Non-zero gravity
- Free-space experience
- Cold areas might be too cold

See also Lester, Yorke, & Mather (2004)

Lunar University Network for Astrophysics Research (LUNAR)

Astrophysics & Cosmology

Track the evolution of the Universe through the Dark Ages and into the Epoch of Reionization via the highly redshifted 21 cm hyperfine spin-flip line from neutral hydrogen

- Secondary science goals:
 - Magnetospheric emissions from extrasolar planets
 - Radio transients
- Why the Moon?
 - Tidally locked—far-side is radio quiet
 - No atmosphere

Heliophysics

Determine the sites and mechanisms for particle acceleration in the inner heliosphere.

- Secondary science goals:
 Interplanetary dust
- Why the Moon?
 - No atmosphere

Radio Heliophysics Space Weather

Coronal mass ejections (CMEs) emit large quantities of magnetized plasma into inner solar system

- Accelerate particles
 - How?
 - Where?
 - Relevance to larger (astro-) physical questions
- Can affect space systems and infrastructure
 - E.g., Quebec power grid failure of 1989
- Can affect astronaut health

Radio Heliophysics

- What are mechanisms and sites of particle acceleration?
- How do CME interactions produce solar energetic particle (SEP) events?
- Need imaging... though considerable progress to date via dynamic spectra

Radio Observatory on the Lunar Surface for Solar Studies (ROLSS)

Imaging instrument capable of 2° resolution @ 30 m wavelength

- 30–300 m wavelength (1–10 MHz frequency)
 - Relevant range for particle acceleration
 - Upper range for lunar ionosphere
 - Inaccessible from the ground
- 3-arm interferometer
 - 500 m long arms
 - First imaging instrument at these wavelengths
 - Order of magnitude improvement in resolution at these wavelengths

Lazio et al. (2011, Adv. Space Res., 48, 1942)

Lunar University Network for Astrophysics Research (LUNAR)

Astrophysics & Cosmology

Track the evolution of the Universe through the Dark Ages and into the Epoch of Reionization via the highly redshifted 21 cm hyperfine spin-flip line from neutral hydrogen

- Secondary science goals:
 - Magnetospheric emissions from extrasolar planets
 - Radio transients
- Why the Moon?
 - Tidally locked—far-side is radio quiet
 - No atmosphere

Heliophysics

Determine the sites and mechanisms for particle acceleration in the inner heliosphere.

- Secondary science goals:
 Interplanetary dust
- Why the Moon?
 - No atmosphere

Cosmic Dawn and the Dark Ages

"What were the first objects to light up the Universe and when did they do?"

New Worlds, New Horizons in Astronomy & Astrophysics

Cf. European AstroNet

Hydrogen Atom

$$n = 1$$
, $F = 1 \rightarrow 0$
 $E_{10} = hv = 5.8743253 \mu eV$
 $T_* = E_{10}/k = 0.068 K$

$$v = 1420.405752 \text{ MHz}$$

$$\lambda = 21 \text{ cm}$$

Cosmic Dawn and Dark Ages

Hydrogen Signal

EoR

Cosmic

Dawn

Dark

Ages

Neutral Hydrogen

Spin-flip transition provides probe of neutral intergalactic medium before and during formation of first stars

> v = 1420 MHz/(1 + z) $\lambda = 21 \text{ cm } (1 + z)$

Radio Spectrum

50 Myr since Big Bang

Portion of radio spectrum relevant for 21 cm observations of Cosmic Dawn and Dark Ages

330 Myr since Big Bang

Yellow = reserved for radio astronomy

- Data from Radio Astronomy Explorer-2, when it passed behind the Moon, illustrating cessation of terrestrial emissions
- Apollo command modules lost communications when behind the Moon.

Lunar Radio Array

Roadmap

- I. Dark Ages Radio Explorer Lunar orbiter
- II. 1 (or few) antennas on Moon
 - Lunar Atmosphere Probe Station
 - Study lunar ionosphere, radio environment
- III. ~ 100 antennas
 - Solar and heliophysics studies
 - Near or far side
 - Radio Observatory on the Lunar Surface for Solar Studies
- IV. $> 10^4$ antennas
 - Cosmology and astrophysics
 - Far side
 - Lunar Radio Array

Dark Ages Radio Explorer

- DARE carries a single, highheritage instrument operating at 40-120 MHz
- Components of all three subsystems (antenna, receiver and spectrometer) are at TRL ≥ 6
- Work underway to have the integrated instrument at TRL 6

From Pritchard & Loeb (2010, Phys. Rev. D, 82, 023006)

Polyimide Film Antenna

Field Tests

- Dipole arm was 8 m long and 30.5 cm wide
- Inner 1 m of each arm tapered to a point at which a 1:1 wideband balun attached
- Good agreement with models (not shown)
- Spectrum recorded from 1–30 MHz every 10 min for just over 2 days
- Local noon occurred at LST ~ 15 hrs
- Decrease in power below 7 MHz is due to absorption by the D layer of the ionosphere

Summary The Moon as a Science Platform

- Moon offers valuable platform for space sciences studies
 - No atmosphere
 - Farside is radio quiet
- Compelling science program
 - Cosmic Dawn and the Dark Ages
 - Particle acceleration and space weather
- Technology and engineering development making good progress
- Staged roadmap with science and technology development at every step

